
Teaching Mutation Testing using Gamification

José Miguel Rojas and Gordon Fraser

Department of Computer Science, The University of Sheffield, United Kingdom
{j.rojas,gordon.fraser}@sheffield.ac.uk

Abstract. Software quality and testing are at the heart of software
engineering, but they are not always at the heart of software engineering
education. As a consequence, advanced techniques such as mutation testing
are often neglected and do not become part of the standard repertoire
of a graduate software engineer. We propose the use of gamification to
teach mutation testing and to strengthen testing skills. We introduce
Code Defenders, a mutation testing game, which can assist educators
in delivering complex mutation testing concepts and is intended to make
the learning experience more enjoyable and fruitful for students.

1 Introduction

It is essential that software is thoroughly tested, but testing is a challenging
and inherently error-prone activity, and it is generally perceived as less fun than
creative activities such as programming [4]. This holds for practitioners as well as
in higher education, where testing maybe does not receive the attention it should.
This lack of engagement with testing is a contributing factor to the lack of adoption
of advanced testing techniques such as mutation testing, despite its potential
to improve fault-detection effectiveness of testing activities. Mutation testing
intrinsically relies on hard to solve computational problems and its application
in practice requires skills that currently are not provided by software engineering
education. Besides cursory treatment in dedicated testing books, we are aware of
only one educational module proposed by Barbosa and Maldonado [1].

There is evidence to support the idea that gamification, i.e., the use of game
playing elements (competition with other players, fantasy scenarios, game rules,
point scoring, etc.) to make difficult tasks less tedious and easier to grasp, can
have a positive impact in education [6]. Following this insight, we introduce
Code Defenders [8], a novel web-based game that implements a gamification
approach to mutation testing, in which the core concepts of mutation testing are
mapped to simple game elements.

In this paper, we explore the use of gamification to teach mutation testing
concepts to software engineering and computer science students. We discuss the
educational aspects involved in the Code Defenders game and propose its
incorporation into programming and testing courses. Our research hypothesis is
that through the use of a mutation testing game, students will be able to grasp
all relevant mutation testing concepts while having fun, and in the end become
better software developers and testers, who produce higher quality software.



2 Background

2.1 Mutation Testing

Mutation Testing [2,3] simulates software faults in a program in order to measure
the fault detection ability of an existing test suite. A number of modified versions
of a program are produced by systematically performing small changes in the
original code. Each modified version is called a mutant and corresponds to the
application of one particular pre-defined mutation operator. A mutation operator
characterises a type of change that can be applied to a program to mimic typical
syntactic errors programmers make. Examples of basic mutation operators are
statement deletion (e.g., while(x<n){} instead of while(x<n){x++;}) or
arithmetic operator replacement (x--; instead of x++;).

The mutation operators simulate only a subset of all the faults a programmer
could possibly make; the hope that this is sufficient is based on two hypotheses
or empirical principles [3]: Programmers tend to write correct or almost correct
programs, and most software faults experienced programmers introduce are due
to small syntactic errors – this is known as the competent programmer hypothesis.
This validates the idea of focusing testing on detecting these kinds of faults,
because a test suite that can distinguish all programs differing from a correct
one by only simple errors is so sensitive that it also implicitly distinguishes more
complex errors — known as the coupling effect.

The process of mutation testing continues with the execution of all mutants
against the existing test suite. If the execution of a test on the original program
and its execution on a mutant differ, the mutant is said to have been killed
by the test. Alternatively, if no test is able to detect a mutant, the mutant
is said to have survived. When a mutant survives, it can be because the test
suite is insufficient and hence more tests are needed, or because the mutant is
equivalent. An equivalent mutant, although syntactically different, is semantically
identical to the original program. Determining equivalence is an undecidable
problem in general and therefore human effort is needed to distinguish equivalent
mutants from mutants that are just hard to kill (stubborn mutant, in mutation
testing jargon). As a result of this process, a mutation score is computed as the
ratio of mutants killed to non-equivalent mutants, and is used to estimate the
fault-detection ability of the existing test suite. Testers can then improve their
test suites by adding new tests that kill the surviving mutants.

A visual overview of all the concepts involved in mutation testing in the form
of a conceptual model is presented by Barbosa and Maldonado [1].

2.2 The Code Defenders Mutation Testing Game

Code Defenders (http://code-defenders.dcs.shef.ac.uk) is a web-based
game that implements an approach to gamify mutation testing. The main notions
of the technique are built into the gameplay of the game: A unit under test
(a Java class) takes a central role, and players take the roles of attackers and
defenders. The attackers’ goal is to create subtle mutants of the unit under test
which are hard to detect. The defenders’ goal, in turn, is to produce strong tests
which kill the attacker’s mutants and can serve as an effective test suite for

http://code-defenders.dcs.shef.ac.uk


the unit under test. Following standard mutation analysis, Code Defenders
considers a mutant killed when execution of a test on the original unit under test
differs from its execution on the mutant –more specifically, when a test passes on
the original unit under test and fails or ends with an error on the mutant– hence
detecting the defect represented by the mutant.

Code Defenders is played in rounds of attack and defence. Points are
awarded to attackers according to how many rounds their mutants survive, and
to defenders according to how good their tests are at killing mutants. Equivalent
mutants constitute a special component of the gameplay. If the defender suspects
a particular mutant is equivalent, an equivalence duel can be triggered. The
attacker is then challenged either to accept that the mutant is equivalent – giving
away points – or to prove it is not by submitting a test that kills it – scoring
extra points. For more details, we refer the reader to a separate publication about
the gameplay [8].

3 Code Defenders as a Learning Environment

Using Code Defenders in an educational scenario was part of the motivation
to develop the game in the first place [8] (while another motivation lies in the use
of gamification to overcome some of the hard computational problems mutation
testing poses). In this section, we discuss the use of the game as an educational
tool. In designing this integration, we seek to achieve an increase in engagement
and motivation among students, as well as in their understanding of the contents
and the development of relevant practical skills.

Due to their nature of information items, the formal definition, history,
underlying principles (competent programmer hypothesis and coupling effects)
and potential application domains of mutation testing need to be presented in a
traditional fashion. After that, when the actual process of mutation testing is
described, the use of Code Defenders can be incorporated.

3.1 Conceptual Education

Mutation testing core concepts introduced in Section 2.1 are naturally embodied
into the storyline of Code Defenders. The task of an attacker is expressly
to create good mutants, whereas the task of a defender is to create good tests.
Both players are constantly informed about the state of all mutants in the game,
whether they are alive, have been killed, or have been identified as equivalent. In
that sense, educators can interleave theory material introducing these concepts
with the use of the game to exemplify them.

It is a challenging task to contextualise the use of any tool to arbitrary groups
of students. The problem is even harder if one intends to accommodate to different
skill sets and learning strategies students may have or different interaction levels
in which students will feel confortable. The design of Code Defenders allows
to create educational material to provide engaging and meaningful practical
experience suitable for diverse groups of students.



3.2 Practical Experience

Puzzles: Creating testing puzzles in Code Defenders is straightforward. The
educator needs to create a new game and seed it with mutants or tests, depending
on whether the intended task for the students is to write tests or to create
mutants, respectively. Puzzles can complement the delivery of new concepts to
students well. For example, before introducing the notion of mutant equivalence,
a puzzle can be presented to students in which an equivalent mutant is seeded and
students are asked to create a test to kill it, but without revealing its equivalence.
The expected outcome is that students will be able to realise the impossibility of
the task without even being familiar with the formal concept.

Duels: This is the most natural kind of practice available in Code Defenders.
It amounts to creating a game and asking pairs of students to play against
one another, each taking the role of the attacker or the defender. Different
programming skill levels can be accommodated by using target classes of different
complexities and either the easy or hard level of the game. In the easy level,
mutants are fully disclosed to the defenders, whereas in the hard level, defenders
must infer the nature of each mutation based on its location in the code.

Self-tutoring: In order to complement classroom education, Code Defenders
can be used as a self-tutoring system in which students, at their own pace, can
further enhance their testing skills. To achieve this, we plan to design a set of
examples, integrate existing automated mutation testing (e.g., Major [7]) and
test generation tools (e.g., EvoSuite [5]) to act as automated players in the game,
develop a script of all possible game actions for each example, and add extra
help components to guide students in the process.

Rewards: Code Defenders implements a simple scoring system that rewards
players in terms of the quality of their mutants and tests. As most gamification
approaches, this scoring system is meant to leverage the competitive nature of
humans to maintain good levels of interest and commitment among students.
Furthermore, the Code Defenders leaderboard can help as a rewarding mecha-
nism for all students in the class. Teamwork can also be accommodated for in
the game by having students play as teams of attackers or defenders.

3.3 Assessment

Code Defenders can easily be extended to serve as evaluation framework. A
class under test can be uploaded alongside a list of pre-defined set of mutants and
tests. These are then used as a game script, similar to puzzles or the self-tutoring
mode, but for which students performance is tracked. Educators can use the
collected data as feedback on the strengths and weaknesses of their students.

4 Conclusions and Future Work

In this paper, we have laid out a plan for using gamification of mutation testing as
an educational resource in programming and testing courses. We have discussed
how Code Defenders can be used as an instructional tool to engage students
in testing tasks and foster a deeper, practical understanding of fault-detection



effectiveness. Furthermore, the design of the game also lends itself well to support
delivering theory lectures on mutation testing and to inform students evaluation.

The ideas discussed in this paper will be evaluated empirically in future
work. As a pilot study, we plan to integrate the system into software engineering
modules taught in the Department of Computer Science at The University of
Sheffield. The effects of using Code Defenders to teach mutation testing can be
measured by comparing course grades, lecture attendance and session evaluations.
We expect experimental results will support our vision that through gamification
students can develop the required skills to apply mutation testing in practice and
use it as a tool for building higher quality software.

Besides the aforementioned intended impact on traditional education, the
long-term goal of this work is more global: to change the way mutation testing is
taught in general. Not only can Code Defenders serve as an educational tool
in traditional education, but it can also be useful in online education, where a
number of programming and testing courses exists (e.g., on Coursera, MIT Open
Courseware, Udacity) but practical educational tools are rarely available.

Ultimately, the purpose of teaching mutation testing is to equip learners with
a powerful tool to support the development of high quality software artefacts.
Being able to identify good mutants and write good tests can directly influence
developers’ performance during software development. This is measurable by
empirical studies in which students are assigned implementation, maintenance or
testing tasks.

Code Defenders is available for playing online at:

http://code-defenders.dcs.shef.ac.uk

References

1. Eduardo F Barbosa and Jose C Maldonado. Establishing a mutation testing educa-
tional module based on IMA-CID. In Second Workshop on Mutation Analysis, pages
14–14. IEEE, 2006.

2. Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale
University, New Haven, CT, USA, 1980.

3. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, April 1978.

4. Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. Bug hunt: Making
early software testing lessons engaging and affordable. In ACM/IEEE Int. Conference
on Software Engineering (ICSE), pages 688–697, 2007.

5. Gordon Fraser and Andrea Arcuri. EvoSuite: automatic test suite generation for
object-oriented software. In ACM Symposium on the Foundations of Software
Engineering (FSE), pages 416–419, 2011.

6. J. Hamari, J. Koivisto, and H. Sarsa. Does gamification work? – a literature review
of empirical studies on gamification. In 47th Hawaii International Conference on
System Sciences (HICSS), pages 3025–3034, Jan 2014.

7. René Just. The Major mutation framework: Efficient and scalable mutation analysis
for Java. In ACM Int. Symposium on Software Testing and Analysis (ISSTA), pages
433–436, 2014.

8. José Miguel Rojas and Gordon Fraser. Code Defenders: A Mutation Testing Game.
In The 11th International Workshop on Mutation Analysis. IEEE, 2015. To appear.

http://code-defenders.dcs.shef.ac.uk

